Fluid Mechanics in Microfluidic Devices

Fluid mechanics is at the core of microfluidic device design, influencing how fluids move through the tiny channels that define these systems. At the microscale, fluid behavior differs significantly from that observed in larger-scale systems, and understanding these unique flow dynamics is essential for optimizing microfluidic performance.Key principles of fluid mechanics, such as laminar flow, surface tension, and viscosity, play a critical role in determining how fluids interact with microchannel surfaces and other fluids. In microfluidics, laminar flow dominates, meaning that fluids flow smoothly in parallel layers without turbulence. This property allows precise control over fluid volumes, which is crucial for applications such as drug delivery, diagnostics, and chemical analysis.By applying fluid mechanics, researchers can design microchannels with specific geometries that enhance mixing, enable precise fluid control, and reduce energy consumption. Advances in computational fluid dynamics (CFD) also help optimize microfluidic device designs, enabling the development of more efficient, cost-effective systems.As microfluidic technologies evolve, a deep understanding of fluid mechanics will continue to drive innovations in lab-on-a-chip devices, point-of-care diagnostics, and other applications, improving healthcare and industrial processes.

    Related Conference of Fluid Mechanics in Microfluidic Devices

    September 15-16, 2025

    4th International Conference on Microfluidics

    Paris, France

    Fluid Mechanics in Microfluidic Devices Conference Speakers

      Recommended Sessions

      Related Journals

      Are you interested in